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This paper applies a recently developed on-line parameter identification (PID) technique to
sets of real flight data and compares the results with those of a state-of-the-art off-line PID
technique. The on-line PID technique takes Linear Regression from Fourier Transformed
equations and the off-line PID is based on the traditional Maximum Likelihood method. Sets
of flight data from the NASA F/ A-18 High Alpha Research Vehicle (HARV) aircraft, which
has been recorded from specifically designed maneuvers and used for off line parameter
estimation, are used for this study. The emphasis is given on the accuracy and on-line measure
of reliability of the estimates. The comparison is performed for both longitudinal and lateral
-directional dynamics for maneuvers at angles of attack ranging a=20° through a=40°. Results
of the two estimation processes are also compared with baseline wind tunnel estimates whenever
possible.
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R : Conversion from radian to degrees
if : Dynamic pressure, lbs/ff
r : Yaw rate, deg/sec

S : Wing area, ft2
t : Time, sec
T : Thrust, lbs.
V : Velocity, ft/sec
W : Diagonal weighting matrix
Y : Vector ofknown responses
X : Matrix of known inputs

Nomenclature-----------
b : Wing span, ft
c : Mean aerodynamic chord, ft
C, : Aerodynamic coefficient, I/rad or 1/

deg
g : Gravity acceleration, ft/sec"
I : Moment of inertia, slug/ff
J : Cost functional
k : Numerical coefficient
m : Aircraft mass, slug
p : Roll rate, deg/sec
q : Pitch rate, deg/sec
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: Sideslip angle, deg
: Incremental change
: Control surface deflection, deg
: Gradient
: Parameter vector to be estimated in ML
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1. Introduction

Traditionally parameter identification has been
an important area to obtain a modeling of aircraft
dynamics and examine the validity of design. The
controller design and/or stability analysis has

Acronyms
CG : Center of Gravity
DOF : Degrees Of Freedom
DFT : Discrete Fourier Transform
DFRC : Dryden Flight Research Center
DTFT : Discrete Time Fourier Transform
EE : Estimation Error
FTR : Fourier Transform Regression
HAR V: High Alpha Research Vehicle
LS : Least Squares
ML : Maximum Likelihood
NR : Newton-Raphson
OBES : On-Board Excitation System
PID : Parameter Identification
SVD : Singular Value Decomposition

e : Parameter vector to be estimated in
FTR

e : Pitch angle, deg
</> : Roll angle, deg
s : Summation
7J.! : Yaw angle, deg
(J) : Frequency, rad/sec

Subscripts
a : Aileron
D : Drag force
dht : Differential horizontal tail
e : Elevator
L : Lift force
I : Rolling moment
lei : Leading edge flap
m : Pitching moment
n : Yawing moment
o : Basic airframe

been performed usually with the identified system.
For this purpose parameter identification ,has
been performed off-line with measurements of
outputs and inputs. Recent adaptive control or
fault tolerant control, however, often tries to
combine parameter identification and a good
control scheme on-line to get best performance,
thus requiring fast parameter identification
scheme. In this context the speed of parameter
convergence, reliability, and accuracy become key
issues (Campa et al, 200I) .

Especially the adaptive control with fast
parameter identification has been pursuited in
research aircraft programs such as the
Reconfiguration Control for Tailless Fighter
Aircraft (RESTORE) program (Brinker and
Wise, 1999, Calise et al, 1998), the ACTIVE
program, using a F.;15 aircraft ( Jorgensen,
1997), and the XV-IS program (tilt-rotor air­
craft) ( Rysdyk and Calise, 1998).

Like off-line parameter identification (PID)
approaches, on-line PID methods can. be
formulated either in the time domain or in the
frequency domain. Within time domain on-line
PID techniques Least Squares, (LS) based
algorithms are used in lieu of gradient-based
techniques because of their better convergence
properties and lower computational effort.
Therefore on-line time domain PID techniques
mainly include variations of the LS method, such
as Recursive Least Square (RLS) (Mendel, 1973,
Ljung, 1987), RLS with a forgetting factor
(Bodson, 1995), a Modified Sequential Least
Square (MSLS) (Monaco et al, 1997), a reat~
time Batch Least Squares (BLS) (Chandler et al,
1995), and Extended Kalman Filtering (EKF)
(Gelb et al, 1973). The real-time applications of
any of these methods present substantial
challenges because of the unavoidable presence of
system and measurement noises, lack of
information for PID purposes in the data, an,d
potential unavailability of independent control
inputs - a necessary condition for an accurate
PID - especially due to the interactions with the
closed-loop control laws. Analytical mechanisms
to handle some of the above problems include the
use of temporal and spatial constraints such as

: Rudder
: Symmetric aileron
: Trailing edge flap
: Wind axis
: Pitch vane
: Lateral force
: Yaw vane

r
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forgetting factors. Another potential problem

with time-domain PID techniques is the lack of a

reliable measure for on-line assessment of the

accuracy of the estimates in the presence of

unmodeled noise.

The objective of this paper is to apply a re­

cently developed Fourier Transform-based PID

technique (Seanor et al, 2001, Morelli 1999) to

NASA F/ A-18 HARV flight data and compare

the results with those of the application of the

well-known Maximum Likelihood method,

which is state-of-the-art off-line PID technique

to date. The results from two approaches are then

compared with the baseline wind tunnel

estimates. The comparison is performed on both
longitudinal and lateral-directional dynamics for

maneuvers at angles of attack ranging a=20°

through a=40°.

This paper is organized as follows. The next

section briefly describes the considered aircraft

and the flight test maneuvers with relative data.

The next section gives a. linearization of the
mathematical modeling of longitudinal and later­

al-directional aircraft dynamics to apply the on

-Iine PID technique. Another section reviews the
basic principles of the well-known Maximum

Likelihood method while.rhe following section

reviews the Fourier Transform Regression PID

technique. The final section describes the results

of the application of both methods using the F/ A
-IS HARV flight data.

2. Mathematical Modeling of the
NASA F/A-18 HARV and Flight

Test Maneuvers

The NASA F/A-18 HARV is a high alpha
testbed aircraft which was used in the high alpha

technology program at Dryden Flight Research

Center. The HARV is from a pre-production

model F/ A-18 aircraft built by former
McDonnell Douglas. Conventional control

surfaces include stabilators, rudders, ailerons,

leading-edge flaps, trailing-edge flaps and speed

brake. An additional thrust vectoring system was

added to the aircraft for the research purposes of

the HARV program to increase the regime of

Table 1 Mass and geometric characteristics of the
NASA F/A-18 HARV

Aircraft Weight (lbs) 36,099

CG Location (% m.a.c.) 23.8

Ix(slug-fr') 22,789

I, (slug-Ir') 176,809

Iz (slug-fr) 191,744

Ixz(slug-Ir') -2,305

Length (tt) 56

Wing Area (fr) 400

Wing Spantft) 37.4

Wing Mean Aerodynamic Chord (ft) 11.52

Wing Aspect Ratio 3.5

Stabilator Total Span (ft) 21.6

Stabilator Total Area (ft2) 86.48

Trailing Edge Flap Span (ft per wing) 8.72

Trailing Edge Flap Total Area (fr) 61.9

Leading Edge Flap Span (ft per wing) 13.8

Leading Edge Flap Total Areatft") 48.4

Aileron Span (ft per wing) 5.68

Aileron Total Area(ft2) 24.4

Rudder Span (ft per vertical tail) 5.21

Rudder Total Areatfr') 15.44

* All listed mass characteristics represent a 60% fuel load

stable flight up to a=70° and increase the aircraft

maneuverability at high angles of attack. The

three view of F/ A -18 HARV is shown in Fig. I
and the mass and geometric characteristics are

listed in Table 1. The longitudinal and lateral­

directional flight test maneuvers consisted of sin­

gle surface independent control surface doublets
generated by an on-board excitation system

(OBES). The longitudinal flight data inputs

consisted of trailing-edge flaps, symmetrically

deflected ailerons, stabilator, and pitch vanes.
Finally, the lateral-directional inputs consisted of

ailerons, differential horizontal tail, rudder, and

yaw vanes.
The aircraft dynamics are modeled in the body­

axis equations of motion as follows:

micg=T+CxqS-mgsin o (I)
mYcg=CyijS+mg sin 1> cos e (2)

mZcg=CziiS+mg cos 1> cos e (3)
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The measurements of the accelerations at the
center of gravity are related to the measurements
at different locations using the relationships:

xcg=ax+ (xcg-Xax) (q2+r2)+ (Yax-ycg)
(r-qP) - (Zcg-z..x) (q+rp) (13)

ycg=ay- (xcg-X<lY) (r+pq) + (Y<lY-ycg)
(r2+Jf) + (Zcg-z..u,) (p-rq) (14)

zcg=az+ (xcg-Xaz) (q-pr) - (yaz-ycg)
(p+qr) + (Zcg-Zaz) (q2+Jf) (15)

where xe, Yai, ZaiU=X, Y, z) are the coordinates
of the location of the i- th accelerometer on the
aircraft. For later use the NASA F/A-18 HARV
dynamics are linearized through small
-perturbation theory using T= To+D.T, ax=
axo+D.ax. etc., as follows:

D. T - m{ D.ax- (zcg- Zaz) D.q + (yaz- ycg) D.r}

=ijS{ Cxpa+ CxaeD.8e+ CX<lUJD.81e!

+ CXat<JD.8te!+Cx.,...D.8sa+ CXq( /V)D.q

+( is )Cx<l~8PV (16)

m{ D.ay- (xcg-X<lY) D.r+ (Zcg-Z<lY) D.p}

=ijS{ CypD.P+ Cy.,..D.8a+ Cy~8r

+ CYa..".D.8dht+ Cyp( 2to )D.P

+CYr(2to)D.r+( is )CY<lyA 8yv } (17)

m{ D.az+ (xcg-Xaz)D.q- (Yaz-ycg)D.p}

=qS{ Cz.,6a+ CzaAoe+ Cz~ole! +Cz...Aote!

+Cz<l••.Msa+Cz.(/V )~q+( Is )Cz<lPAopV (18)

!z~P-!xz~r=qSb{ CI~{3+CI.,Aoa+ CI.,Aor

+Cla-Aodht+ CIP ( 2~)~P+Clr( 2~)~r} (19)

!yD.q=ijSc{ Cmpa+ CmaA8e+ Cma..A81e!

+ Cmat<JD.8te!+Cma...D.8sa+ Cmq( 2~ )D.q }

+ (drv-xcg) •Ts- CmapA8pv (20)

IzD.r- !xzD.p=ijSb{ CnpD./3+ Cn""D.8a

+Cn~8r+Cnad...D.8dht+Cnp( 2to )D.P

d:: ;;":1'(' 4
o 0

Fig. 1 Three view of F/ A-IS HARY

Ixp- Ixzr+ (Iz- Ix)qr-Ixzpq = sssc. (4)
IyQ + (Ix- Iz) rp+ Ixz (jl- r2)

=ijScCm+ (drv-xcg) •T· Cmap.8PIl (5)
Izr- /,czp+ (Iy- Ix)pq+ Ixzqr

«sssc,« (drv-xcg)' T· Cna",,8YIl (6)

where T is the installed thrust and d-« is the
longitudinal distance of the location of the thrust
vectoring vanes. The component build-up for the
total longitudinal and lateral-directional stability
and control derivatives is given by:

Cx=Cxo+Cxaa+Cx",,8e+CxauJ81e!

+ CXa<-J8te!+CXa...8sa+ Cxq(2~ )q

+( Is )Cxap,8pII (7)

Cy=CYo+CYpp+Cy",,8a+CYlJT8r

+ CYa..".8dht+ CYP( 2t )p

+CYr( 2t )r+( Is )CY<l",,8yv (8)

Cz= CZo+Czaa+Cz",,8e+CZ<lUJ81e!

+ CZa<-J8te!+ CZ<l...8sa+ CZq( 2~ )q

+( Is )Cz<lp.8PV (9)

Cl= Clo+ClpP+CI",,8a+ CllJT8r+ CI<ldhl8dht

+CIP(2t)P+Czr(2t)r (10)

Cm= Cmo +Cmaa+ Cm",,8e+Cmaz'J81e!

+C...../ote!+C...,...osa+C'".U~l)q (II)

+( drv~xcg)( Is )Cm<lp.8PV

Cn=Cno+CnpP+ Cna.8a+CnlJT8r +Cnadhl8dht

+Cnp ( 2t )P+Cnr( 2t )r

+( drv1/cg)( Is )Cna",,8YV (12)
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3. Review of the Maximum­
Likelihood Method with Newton­

Raphson Technique

In this section we briefly review the Maximum
Likelihood method and the reader may refer to
Maine and Iliff, 1985 for detail. The Maximum
Likelihood (ML) method coupled with a Newton
-Raphson (NR) minimization technique has
been one of the most successful PID methods for
several years. It was introduced at NASA Dryden
in the late 1960's. The effectiveness of this ap­
proach is well documented and excellent results
have been achieved for a large variety of aircraft.
This method minimizes a quadratic cost function
containing differences between the aircraft
measured and computed responses. In general, the
goal is to maximize the probability that the com­
puted system responses, based on a set of
estimated stability derivatives, are representative
of the true system dynamics. Using the maximum
likelihood method the conditional probability to
be maximized is given by:

P(z) =P(z/~)P(~)

I n. 1 e-tm) (22)
2Jr( n,n;+n,)( ~)T( ~) 2"

where p(z/~) and p(~) are given by:

P(z/~) I n, e-J(e) (23)
2Jr(ntf'z) I Wl-1 IT

P(~) I 1 e-t[(e-eo) Twz(e-eo») (24)
2Jr(ne'z)1 W2 -liz

thus the problem reduces itself to the
minimization of the cost function J (~) given by:

I n,
J(~)=2ntnz ~1 ([Z(tk)-y(tk)Y

Wl[Z(tk) -y(tk) J) (25)

In particular, P (z/~) is the conditional prob­
ability that a response z occurs for an actual
system for a given value of the unknown
parameters contained in a vector ~. P (~) is the
probability that the unknown parameters vector

matches some "a priori" values (~o). It is assumed
that P (z/~) and P (~) are independent and fol­
low Gaussian distributions with zero means. The
accuracy of the estimates increases as the differ­
ences between the values of the components of z
and Y, at the same discrete time index, decrease.

A Newton-Raphson (NR) algorithm is used to
solve the associated system of equations by using
the first and the second gradients of the cost
function with respect to the vector (~) containing
the aerodynamic parameters to be estimated. The
relations for the NR algorithm can be discussed
as the following.

The process is iterative with the updating of the
vector ~ until the convergence criteria is met
resulting in the final ML estimates of the aircraft
model parameters. First a Taylor series expansion
is used to generate an expression for J (~), as is
shown below:

J (~) =J (~i) +'1J (~i) • (.~~)

++(~e)~J (~i) • (~~) (26)

The NR algorithm solves the associated system
of equations using the gradient and the hessian of
the cost function with respect to the vector
containing the aerodynamic parameters to be
estimated. Setting the gradient with respect to ~,

equal to zero the cost function is minimized using:

'1J (~) =0='1J (~i) +'1e ('1J (~i) • (~~))

+ ~ '1e( (~e)~J (~i) • (~~)) (27)

I n, T
~J (~i) =--L: [['leY Uk)J W!'ley(tk) J (28)

ntnzk=l

leading to:

~i+1=~i- [(~J (~i)) J-1'1J (~i) (29)

The process is iterative with the updating of the
parameter vector ~ until the convergence criteria
is met resulting in the final ML estimates of the
aircraft model parameters.

4. On-line PID Using Fourier
Transform Regression (FTR)

In this section a fast on-line PID method IS

modified and applied to get aerodynamic
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coefficients for NASA F/A-18 HARV. The on­
line PID method, which is called Fourier
Transform Regression (Seanor et al, 2001), is a
frequency-based simple single-step technique
based on Discrete Time Fourier Transform
(DTFT) using previous work described in
(Morelli, 1999, Seanor et al, 2001). Consider a
dynamic equation which is given in the form

accounts for noise and non-linearities, the above
equations can be rewritten in the general form
y=xe+c with conventional definitions for y,
X, and e. Thus the problem can be formulated as
a LS regression problem with the following com­
plex cost function:

J=+( y-Xe)"(y-Xe) (35)

x=[Lia, Sq, Li8e, LiMej, LiStej, liSsa, LiSpveF
y=[~q, ~rF

z=[~T, ~axF

Sampling the input and motion variables at
time t=k~t we have:

Ay(k~t)+Bz(k~t)=x(k~t)Te (31)

Applying the Discrete Time Fourier Transform
(DTFT) (Haykin and Van Veen, 1999) to the
above samples we have:

Ajwy(w) +Bz(w) =x-(w) Te (32)

where p is the number of parameters to be

estimated and m is the number of frequency
points. Furthermore, the standard deviation of the
estimation error for the l-th unknown of the p
parameters in 8 can be evaluated as the square
root of the (I, l) coefficient (main-diagonal
coefficient) of the covariance matrix. This stand­
ard deviation allows for an on-line assessment of
the accuracy of the estimates of the parameter.

The type of required on-line calculations
should also be analyzed for an assessment of the
computational effort. For a given frequency, Wn,
the DTFT at the i-th time step is related to the
DTFT at the (i-I) -th time step as follows:

x";. (Wn) =X";.-I(Wn) +x...e-jaJ"kAt (39)

Therefore, the on-line computation of x";. (Wn)
requires a reasonably low computational effort.
In addition, the scheme requires only a fixed
memory space for x";. (w) even if it is updated at
every step. Furthermore, a very important
characteristic of this technique is that the time
domain data from previous flight maneuvers­
containing good information for PID purposes-

The solution is given by:

8=[Re(X·X)]-IRe(X"y) (36)

where" indicates a complex conjugate transpose.
Note that the cost function is made of a
summation over m frequencies of interest. In
addition, the covariance matrix of the estimates of
8 is computed as

cov(8)=E{ (8-e) (8-e)·}
=02(8) • [Re(X"X)]-1 (37)

where 02 (8) is the equation error variance" and
can be estimated on-line using

(33)

(30)Ay(t) +Bz(t) =x(t) Te

N-I
x(w) = ~ x(k~t) e-jlJJk<lt

';'=1

N-I
y(w) = ~ y(k~t) e-jlJJk,Jt

';'=0

N-I
z(w) = ~ z(k~t) e-jlJJk,Jt

.;,=0

where

where A, B are known constant vectors and e is
an unknown constant vector to be estimated. Note
that the linearized Eqs. (16) - (21) are in the form
of (30). For example, in Eq. (16), we would
have:

As in the general LS regression method, the
measurements of the vectors x, y , and z can be
used to set up a cost function having the
aerodynamic coefficients as an argument. In par­
ticular, one can form the m algebraic equations
which hold over a set of frequency points [WI, ah,
"', Wm]:

r AjwIY=(WI) +B~( all) l[ x""r (WI) l
l

AjahY (ah) +Bz (ah) x""r (ah)
'" = Ie (34)
'" I

AjwmY-(Wm) +Bz-(Wm) x""r (Wm) -'

Introducing a complex error vector e. which
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Table 2 Comparison of estimates for longitudinal aerodynamic coefficients

Aerodynamic
a=30 deg, M=0.38, h=37,822 ft a=40 deg, M=0.32, h=34,134 ft

FT FTCoefficients WT ML WT ML
(Std. Err.) (Std. Err.)

CLa
- 0.0299 0.0362 - -0.0211 -0.0160

(0.0023) (0.0048)

C L• 4.5701 26.5462 61.8914 -8.7421 -30.2781 -46.3713
(7.9230) (17.8646)

c.; 0.0110 0.0100 0.0110 -0.0089 -0.0076 -0.0110
(0.0017) (0.0043)

CLSte!
0.0068 0.0025 0.0066 -0.0034 -0.0003 -0.00047

(0.0006) (0.00099)

CLSsa
0.0045 0.0022 0.0022 -0.0008 -0.0016 -0.0016

(0.0004) (0.0008)

CLSpv
- 0.0110 0.0074 - -0.0102 -0.0293

(0.0058) (0.0171)

c., - -0.0029 -0.0010 - -0.0058 -0.0058
(0.0014) (0.0017)

c; OOסס.6- -12.2215 -10.7668 -13.00 -11.6445 :-13.4954
(4.7498) (6.2015)

CmSe
-0.0150 -0.0128 -0.0133 -0.0120 -0.0106 I -0.01l7

(0.0010) (0.0015)

CmSte!
0.0013 0.0008 0.0015 0.0016 0.0009 0.00055

(0.0004) (0.00034)

CmSsa
-0.0020 -0.0007 -0.0012 -0.0013 -0.0007 -0.00077

(0.0003) (0.00027)

Cms""
- -0.0098 -0.0222 - -0.0103 -0.0181

(0.0019) (0.0031)

No. of - - 13,734,909 - - 13,743,187
MATLAB

flops

MATLAB - - 2.860 sec - - 3.350 sec
CPU Time

can still be used by simply iterating the calcula­
tion of the DTFT. Thus, the DTFT approach
allows for retaining all the PID results from
previous time steps and, at the same time,
provides the necessary flexibility to follow
changes in the system dynamics.

In terms of frequency range, the m frequencies
over which the cost function is evaluated can be
selected as evenly spaced between Wmln and COrnax.

Typically, the rigid body dynamics frequency
range for the considered aircraft can be selected
allowing to filter out higher frequency noise and/

or structural interference. Clearly, a smaller range
of frequency would decrease the computational
effort.

Since the DTFT is recursively computed, the
part of the algorithm requiring most com­
putational effort is the inversion of matrix Re (XT

X) which is performed using Singular Value
Decomposition (SVD). Particularly, for each
vector e of parameters to be estimated, one SVD
(0(n3) flops) of the matrix Re(XTX) (average
size 6 by 6) has to be performed for each com­
putational step.
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Table 3 Comparison of estimates for lateral/directional aerodynamic coefficients

Aerodynamic
a=20 deg a=30 deg

Coefficients WT ML
FT

WT ML
FT

(Std. Err.) (Std. Err.)

CyP - -0.0116 -0.0021 - -0.0117 0.0006
(0.0024) (0.0024)

CYM
-0.0008 -0.73E-4 -0.0037 0.0008 0.00055 -0.0031

(0.0013) (0.0016)

CYM 0.0028 0.0029 0.0012 0.0019 0.0020 0.0012
(0.0008) (0.0009)

CYadht
-0.0001 0.000065 -0.0045 0.0010 0.0021 -0.0048

(0.0023) (0.0027)

CYdyv
- 0.0096 0.0032 - 0.0125 0.0005

(0.0042) (0.0042)

c., - -0.00335 -0.0031 - -0.0030 -0.0023
(0.0002) (0.0001)

c; -0.2300 -0.2617 -0.2839 -0.4500 -0.2310 -0.2713
(0.0658) (0.0471)

CIM 0.0013 0.0014 0.0011 1.000E-3 1.0060E-3 0.8988E-3
(0.0001) (0.075E-3)

ClaR 0.00043 0.00016 0.7882E-4 OA30E-3 0.2496E-3 0.1245E-3
(0.732E-4) (0.05IE-3)

Cladht
0.0006 0.00112 0.0016 0.00065 0.0010 0.0011

(0.0002) (0.0001)

c., - 0.00095 0.0013 - OA156E-3 0.5360E-3
(0.0004) (0.174E-3)

c; - -0.2345 -0.7168 - -0.2778 -0.0634
(0.3803) (0.1484)

CnM
-0.350E-3 -0.0732E-3 -0.0860E-3 -0.400E-3 -0.2634E-3 -0. 1820E-3

(0.185E-3) (0.I09E-3)

CnaR
-0.0010 -0.00091 -0.0010 -0.550E-3 -0.7108E-3 -0.6680E-3

(0.0001) (0.068E-3)

Cnadht
-0.004E-3 -0.4915E-3 -0.3678E-3 -0.0002 -0.0010 -0.00072

(0.33IE-3) (0.00018)

Cnay V
- -0.0086 -0.0205 - -0.0094 -0.0186

(0.0010) (0.0005)

No. of - - 34,039,134 - - 34,038,034
MATLAB

flops

MATLAB - - 2.580 sec - - 2.520 sec
CPU Time

5. Results of the Comparative Study

The estimation results are summarized in Tab-

les 2 and 3 for the longitudinal and lateral­

directional maneuvers respectively. For the

longitudinal maneuver at a=30·, two longit­

udinal time histories are shown in Fig. 2 with the
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Fig. 3 Time histories of the longitudinal control
inputs
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longitudinal inputs shown in Fig. 3. The time

histories of the estimates for the longitudinal
derivatives along with the relative maximum like­

lihood and wind tunnel estimates are shown in

Figs. 4-7. It is seen that all the parameters were

estimated within reasonable ranges and is com­
parable with both wind tunnel and off-line

Maximum Likelihood results. It should also be

noted that most of the standard deviation of the
estimation errors are small except for the q­

parameters, which are usually difficult to estimate

from the flight data since they are coupled with
the a-parameters.

For the lateral-directional maneuver at a=30°,

several lateral-directional time histories are

shown in Fig. 8 with the lateral-directional PID

inputs shown in Fig. 9. The time histories of the
estimates of the lateral-directional derivatives

along with the relative maximum likelihood and

wind tunnel estimates are shown in Figs. 10-13.
In general the lateral-directional estimates seem

to show more consistency between the results

from the different methods. It is reminded that the

estimation is performed sequentially as the flight
data is received while most techniques including

Maximum Likelihood method are executed in a

post-processing batch mode. It can also be noted
that derivatives converge within a short amount

of time following the PID maneuver and the

required computational times are very small (2.5­

3.4 seconds for 22-29 second maneuvers). This

convergence speed along with the computational
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Fig. 8 Time history of the lateral/directional ma­
neuver

Fig.9 Time history of the lateral/directional control
inputs

this technique provides totally independent refer­
ence values to parameters.

time{aec)

Conclusions

This paper has presented estimates for both
longitudinal and lateral-directional derivatives
from F / A-18 HARV flight data using Fourier
Transform Regression (FTR) PIO method. The
estimation results have been compared with those
by the state-of-the art off-line PIO method, the
well-known Maximum Likelihood approach
coupled with a Newton-Raphson technique. It
was seen that the FTR PIO method provides very
good estimates with small amount of computation
time and quick convergence, and also gives good
measure of reliability of the estimates on-line.
These specific characteristics of the FTR-based
PIO method make it appealing for use with real
time applications.

zs201.
-0001 '----'''----- ....J

0003

., '-------------------'

0004r--...,,~.,....-----------__,

Fig. 11 Time history of ClBA estimate

Fig. 10 Time history of Ci, estimate

time (sec)

1°002
~I 0.001
G

efficiency would make this technique appealing
for applications within adaptive flight control

systems. Another point to be noticed is that this
technique does not use any "a priori" values of
parameters and thus does not require any
regularization with "a priori" values. Therefore,
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